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Abstract

We consider the problem of 3D shape recovery from
ultra-fast motion-blurred images. While 3D reconstruction
from static images has been extensively studied, recover-
ing geometry from extreme motion-blurred images remains
challenging. Such scenarios frequently occur in both nat-
ural and industrial settings, such as fast-moving objects in
sports (e.g., balls) or rotating machinery, where rapid mo-
tion distorts object appearance and makes traditional 3D
reconstruction techniques like Multi-View Stereo (MVS) in-
effective.

In this paper, we propose a novel inverse rendering ap-
proach for shape recovery from ultra-fast motion-blurred
images. While conventional rendering techniques typically
synthesize blur by averaging across multiple frames, we
identify a major computational bottleneck in the repeated
computation of barycentric weights. To address this, we
propose a fast barycentric coordinate solver, which sig-
nificantly reduces computational overhead and achieves a
speedup of up to 4.57×, enabling efficient and photorealis-
tic simulation of high-speed motion. Crucially, our method
is fully differentiable, allowing gradients to propagate from
rendered images to the underlying 3D shape, thereby facil-
itating shape recovery through inverse rendering.

We validate our approach on two representative motion
types: rapid translation and rotation. Experimental results
demonstrate that our method enables efficient and realis-
tic modeling of ultra-fast moving objects in the forward
simulation. Moreover, it successfully recovers 3D shapes
from 2D imagery of objects undergoing extreme transla-
tional and rotational motion, advancing the boundaries of
vision-based 3D reconstruction. Project page can be found
at https://maxmilite.github.io/rec-from-
ultrafast-blur/.

1. Introduction
Estimating the shape of an object from image collections
is crucial for numerous applications, including film produc-
tion, gaming, and AR/VR. As a long-standing goal in com-
puter vision and graphics, extensive research has leveraged
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Figure 1. Ultra-fast motion blur is common in real-world scenar-
ios. Top: A ball undergoing translational motion [32]. Bottom: A
spinning top in rotation [1]. In this paper, our goal is to recover 3D
shapes from the high-speed translational and rotational motion.

geometric and learning-based priors for object shape recov-
ery [5, 9, 11, 14, 22]. However, most existing methods focus
on static objects or those with low-speed motion [4, 23, 43],
leaving shape recovery of high-speed objects largely under-
explored.

In this work, we investigate an extremely challenging
question: Can we recover the shape of an object under-
going ultra-fast motion? Fast motion is prevalent in real-
world scenarios, such as flying balls in sports, rotating
machinery, or high-speed robotics. While reducing expo-
sure time can mitigate blur, it often leads to extremely low
signal-to-noise ratios in low-light conditions, making mo-
tion blur physically unavoidable in many practical scenar-
ios. However, extreme motion blur severely distorts the ob-
ject’s appearance, often obscuring the underlying shape. As
shown in Fig. 1, the object’s shape is barely perceptible in
the captured blurry images, making traditional multi-view
geometry-based methods, such as Structure from Motion
(SfM) [9, 11], ineffective. SfM-based techniques rely on
sharp feature correspondences across views, but when mo-
tion blur obscures these features, shape recovery becomes
highly challenging.

Alternatively, recovering 3D shape from 2D image col-
lections can be formulated as an inverse problem, where
the objective is to optimize the shape so that its render-
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ings match the observed images [22]. Leveraging this
paradigm, we formulate shape recovery under ultra-fast mo-
tion as an inverse rendering problem, where both geometry
and appearance are estimated by simulating the blurry pro-
cess. Typically, motion blur can be approximated by render-
ing multiple static frames and averaging them [32–34, 39].
However, this method becomes computationally expensive
for ultra-fast translational or rotational motions. As shown
in Fig. 2, generating realistic motion blur under such condi-
tions requires synthesizing and averaging over 50 individual
static frames per blurry image, leading to excessive render-
ing costs and memory consumption.

We carefully analyze the computational bottleneck in
motion blur synthesis. While a single barycentric compu-
tation is inexpensive, we identify that the repetitive calcula-
tion of these weights required for temporal integration be-
comes a primary source of inefficiency. This is because
barycentric weights must be computed for every pixel with
respect to all triangles, and the synthesis of motion blur
further amplifies the computational cost by requiring these
computations across all sampled frames, leading to a sig-
nificant overhead. To address this issue, inspired by ana-
lytic motion approximation techniques [10], we propose a
fast barycentric coordinate solver that significantly reduces
computational complexity. By integrating this solver into
our differentiable rasterization framework, our approach
achieves significant speedup while preserving the accuracy
of motion blur simulation. Furthermore, we reformulate the
rendering process in a soft, fully differentiable manner, al-
lowing gradients to propagate through motion-blurred im-
ages to the underlying 3D shapes.

With its differentiable capabilities, our framework en-
ables 3D shape recovery through an inverse rendering
pipeline: Beginning with an initial 3D shape, we render
motion-blurred images and compare them with the observed
ground-truth (GT) images. The shape is then iteratively re-
fined by minimizing the discrepancy between the rendered
and GT images. This analysis-by-synthesis approach allows
for shape recovery from multi-view blurred images, even
under extreme translational and rotational motion.

We evaluate our method on a wide range of testing
cases across various shapes and categories. Our method
successfully recovers shapes from heavily blurred images
caused by ultra-fast motion. Additionally, we demonstrate
3D shape recovery from real-world motion-blurred images,
showcasing the effectiveness of our method in challenging
real-world scenarios. Our work pushes the boundaries of
3D recovery from ultra-fast motion-blurred images.

2. Related Work
2.1. General Deblurring Methods
Motion blur arises when multiple scene contents are pro-
jected onto the same pixel due to motion during image cap-

(a) Static (b) 15 Samples (c) 30 Samples

(d) 50 Samples (e) 100 Samples (f) 180 Samples
Figure 2. Motion blur is typically synthesized by rendering and
averaging multiple frames. However, for extreme motion, a large
number of frames are required to achieve realistic results. Here,
we illustrate a bicycle undergoing extreme translation. Noticeable
artifacts appear when using fewer samples, and at least 50 frames
are needed to produce a realistic motion-blurred image.

ture [43]. This blur can originate from various sources, in-
cluding camera motion, object motion, or long exposures
in low-light conditions. Typically, motion blur is mod-
eled as a convolution of a clean image with a blur ker-
nel. Numerous methods have been developed to address
this issue, leveraging various priors such as total varia-
tion (TV) and phase information [27], deep neural net-
works [12, 13, 26, 36, 44, 45], generative adversarial net-
works [19, 20, 42], and, more recently, diffusion mod-
els [2, 6, 7, 38, 39]. However, these methods primarily focus
on low-speed motion, where the blur kernels remain rela-
tively small. Furthermore, most approaches are confined to
2D image space, making them ineffective for handling more
complex, non-linear motion patterns, such as rotations.

2.2. Shape Recovery from Blurry Images or Videos
Our objective is to recover 3D shapes from blurry im-
ages of objects undergoing extremely fast motion [10, 37].
Objects exhibiting motion blur are often categorized as
Fast Moving Objects (FMOs) [30]. Prior works have ex-
plored reconstructing both shape and motion from images
or videos [17, 18, 31]. Rozumnyi et al. [33, 34] pioneered
methods to recover 2D and 3D shapes along with motion
from blurry images and videos. These approaches effec-
tively leverage neural network-based learned priors, such as
the DeFMO network [32], to predict per-timestamp static
silhouettes of the object. Combined with differentiable ren-
dering techniques [5, 22], they jointly estimate shape and
motion via optimization, enabling robust solutions across a
broad range of practical scenarios.

While impressive results are achieved, these methods
also largely rely on accurately estimating object motion and
static silhouettes, which might struggle with challenging,
ultra-fast motion inputs. In this scenario, the resulting blur



introduces an unprecedented level of visual ambiguity, mak-
ing the accurate recovery of static object silhouettes par-
ticularly challenging for [32]. In contrast, our method
enables shape recovery under significantly more extreme
high-speed motion conditions, demonstrating new capabili-
ties in reconstructing objects undergoing ultra-fast motion.

2.3. Inverse Rendering
Shape recovery through inverse rendering has made rapid
progress in recent years. A variety of 3D representa-
tions, including meshes, neural radiance fields (NeRF) [24],
and Gaussian splatting [15], have been combined with
differentiable rendering techniques such as mesh render-
ing [5, 14, 21, 22], volume rendering [8], and surface ren-
dering [28] to jointly estimate shape, texture, lighting, and
material directly from images [25, 40]. However, these
methods are generally designed for clean, static images, and
their applicability to motion-blurred scenes remains limited.
In this paper, we propose a differentiable, rasterization-
based renderer specifically designed to handle ultra-fast mo-
tion. Our approach extends inverse rendering to extreme
motion-blurred conditions, making it a promising solution
for high-speed shape recovery.

3. Method
We now describe our method. We first provide the prelimi-
naries of traditional rasterization algorithms in Sec. 3.1 and
analyze their computational bottleneck. We then present our
solution: a fast barycentric coordinate solver in Sec. 3.2.
With this new solver, we detail our differentiable motion-
blur rendering algorithm in Sec. 3.3.

3.1. Preliminaries of Rasterization

Rasterization is a fundamental rendering technique that
projects 3D triangle meshes onto a 2D image plane. Typ-
ically, it operates on a per-pixel basis by computing its
barycentric coordinates with respect to each triangle. For
a screen pixel pi and a projected triangle face Fj with three
vertices

[
v0 v1 v2

]
, we denote the barycentric coordi-

nates of pi with respect to Fj as w =
[
w0 w1 w2

]T
,

which satisfies the equation:

pi = w0v0 + w1v1 + w2v2. (1)

The vector w is then used to interpolate vertex attributes,
such as colors or texture UV mappings.

Traditional differentiable rasterizers (e.g., [5, 22]) com-
pute w by solving a linear system. For example, if we define
pi =

[
u v 1

]T
and each vertex v =

[
x y 1

]T
, the

triangle Fj can be expressed as:

Fj =

x0 x1 x2

y0 y1 y2
1 1 1

 . (2)

The barycentric coordinates can then be obtained by
solving:

Fjw = pi ⇒ w = F−1
j pi. (3)

If all w0, w1, w2 fall within the range [0, 1], the pixel pi

is covered by the triangle Fj . Its final color is then deter-
mined using the Z-buffer algorithm, which selects the clos-
est surface among all overlapping triangles.

Discussion We observe that barycentric coordinate com-
putation constitutes a significant computational bottleneck
in the context of differentiable motion-blur rasterization.
Since barycentric weights for every pixel must be computed
with respect to relevant triangles, the cost scales linearly
with the number of temporal samples required to generate
smooth, realistic blur effects. To overcome this limitation,
we propose a fast barycentric coordinate solver that dras-
tically reduces computational complexity and significantly
accelerates rendering speed.

3.2. Fast Barycentric Coordinate Solver

Traditional rasterization methods [5, 22] synthesize motion
blur by rendering multiple K frames and averaging them.
However, by assuming that each triangle moves linearly in
time, we propose a fast barycentric coordinate solver that
avoids the heavy cost of repeated K barycentric computa-
tion.

Consider a 3D mesh object M moving linearly from time
T = 0 to T = 1, where our goal is to render K frames at
time steps T = 0

K−1 ,
1

K−1 ,
2

K−1 , . . . ,
K−1
K−1 . For a triangle

Fj moving from T = 0 to T = 1, at a specific time T = t,
its time-dependent vertex positions can be defined as:

Fj(t) =
[
v0(t) v1(t) v2(t)

]
. (4)

Since we assume linear motion, each vertex position fol-
lows linear interpolation between the starting point v(0) and
ending point v(1):

v(t) = (1− t)v(0) + tv(1). (5)

Thus, the matrix representation of Fj(t) can be repre-
sented as:

Fj(t) =

x0(t) x1(t) x2(t)
y0(t) y1(t) y2(t)
1 1 1

 . (6)

We then compute the barycentric weights w(t) as:

w(t) = Fj(t)
−1pi =

adj(Fj(t))

det(Fj(t))
pi, (7)

where adj(Fj(t)) and det(Fj(t)) are the adjugate matrix
and determinant of Fj(t).



Moreover, with the assumption of linear motion, they
could be written as quadratic functions of t:

w(t) =
A1t

2 +A2t+A3

a1t2 + a2t+ a3
, (8)

where A1,A2,A3, a1, a2, a3 are precomputed 3×1 vectors
and values that are independent of t and depend solely on
Fj(0),Fj(1) and pi. Consequently, for the total K frames,
these coefficients (A1,A2,A3, a1, a2, a3) can be computed
only once, and the barycentric coordinate w(t) can then be
evaluated using Eq. (8). This allows for efficient barycen-
tric computation without per-frame solving barycentric lin-
ear equations. The full derivation is provided in Section B.

3.3. Differentiable Rasterization

With our fast solver, we now describe our differentiable
motion-blur rasterization, which is built on prior state-of-
the-art differentiable rasterization works SoftRas [22] and
DIB-R [5].

We first decompose the entire motion into several
segments, assuming that inside each segment, all faces
move linearly, which is a common assumption in previous
motion-blur simulation work [10, 29, 37]. Note that our
method can support complex motions, e.g., a motion com-
posed of rotation and translation, as long as it can be di-
vided into linear motion segments (see Sec. L.1). For linear
motions, such as translation, larger segments can be used,
whereas for non-linear motions, like rotation, smaller seg-
ments are employed. In our experiments, we find that even
for the extreme rotational motion, we can divide the full ro-
tation into 12 segments and render smooth results.

Next, for each segment, we treat its start and end as
keyframes and render intermediate frames with our fast
solver. These rendered frames are averaged to generate the
segment blurry image. Subsequently, all segment images
are further averaged to produce the final blurry image.

Following DIB-R [5], we also separately process fore-
ground pixels (covered by one or more faces) and back-
ground pixels (not covered by any faces) attributes.
Foreground Pixels For foreground pixels, we perform
barycentric interpolation for each frame at time T = t on
the closest covering face using the Z-buffer:

I(t) = w0(t)c0 + w1(t)c1 + w2(t)c2, (9)

where c represents vertex attributes (e.g., vertex colors or
texture UV coordinates).
Background Pixels If a pixel is not covered by any tri-
angle, in differentiable rasterization it is assumed that it
could be influenced by all triangles. Similarly, we extend
the probability of a triangle Fj influencing a pixel pi to a
time-dependent version:

Aj
i (t) = exp

(
−d (pi,Fj(t))

δ

)
, (10)

where Aj
i (t) is the time-dependent probability, δ is a hyper-

parameter [22], and d (pi,Fj(t)) is the squared Euclidean
distance, which can be defined as

d (pi,Fj(t)) = min
p∈Fj(t)

||pi − p||22 . (11)

The core of the Euclidean distance calculation lies in
finding p ∈ Fj(t) that is closest to pi. By replacing p with
another form p = Fj(t)ŵ, where we constrain ŵ ∈ [0, 1]3

to ensure p ∈ Fj(t), finding the closest p is equivalent to
finding ŵ∗, which can be written as:

ŵ∗ = argmin
ŵ∈[0,1]3

∥Fj(t)w(t)− Fj(t)ŵ∥22 , (12)

where we also replace pi = Fj(t)w(t).
However, we find that evaluating Equation (12) requires

additional computational resources for computing Fj(t)
across frames. To further accelerate the computation, we
approximate Fj(t) with either Fj(0) or Fj(1), depending
on whether t is closer to the start or the end:

ŵ∗=argmin
ŵ∈[0,1]3

∥Fj(X)w(t)−Fj(X)ŵ∥2
2, X=

0 t≤0.5

1 t>0.5
(13)

Eq. (13) requires only the evaluation of F(0)
j ,F(1)

j , which
significantly reduces computational cost while introducing
only minor approximation errors. The full derivation is pro-
vided in Sec. B. Finally, with the computed ŵ∗, we obtain

d (pi,Fj(t)) = ∥Fj(t)w(t)− Fj(t)ŵ
∗)∥22 . (14)

We then combine the probabilistic influence of all trian-
gle faces on a particular pixel as

Ai(t) = 1−
∏
j

(
1−Aj

i (t)
)
. (15)

Gradient Computation Equations (9) and (15) are fully
differentiable [5, 22]. Therefore, our method supports
backpropagation by propagating gradients through each
time-dependent intermediate frame, and ultimately into the
keyframes, ensuring efficient optimization in inverse ren-
dering tasks.

4. Analysis
In this section, we evaluate the effectiveness of our method
through extensive synthetic experiments. We implemented
our method based on SoftRas [22] but split the pixels into
foreground and background, following DIB-R [5]. We pro-
vide the implementation details in Section C.

We first analyze the ultra-fast motion blur synthesis ef-
fect in Sec. 4.1, including both forward rendering and back-
ward gradients. Then, in Sec. 4.2, we present the computa-
tion speed, demonstrating significant acceleration over prior
methods.
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Figure 3. Forward rendering & backward gradient visualization
for ultra-fast motion-blur synthesis. Our rendered images and gra-
dients exhibit a high degree of similarity to those generated by
SoftRas across various motion cases and sample numbers. Scene
settings and render details are provided in Sections E and I.

4.1. Qualitative Validation
We first present the synthesis of ultra-fast motion blur
effects, including both translational and rotational move-
ments. We show forward rendering results and their back-
ward gradients. As a reference, we also apply SoftRas [22]
to render with the same settings (e.g., the same number of
sampled frames) and compute the corresponding gradients.
The default hyperparameter values provided in SoftRas are
used for this comparison.

The comparison results are shown in Fig. 3. Across all
test cases, our rendered images and gradients exhibit a high
degree of similarity to those generated by SoftRas, which
demonstrates the effectiveness of our method in realistic
and differentiable motion blur synthesis. In theory, un-
der linear motion, our foreground pixel renderings should
be identical to those of SoftRas, whereas our background
pixel computation shows slight discrepancies, primarily due
to our Euclidean distance approximation (as detailed in
Eqs. (12) and (13)). However, we show that these minor
discrepancies have negligible impact on gradient computa-
tion of our method (Fig. 3 Bottom).

4.2. Speed Comparison
Our method is significantly more efficient than traditional
blur synthesis methods, e.g., applying SoftRas to render and
average multiple frames. To evaluate the running speed, we
randomly select 50 models from ShapeNet [3], each con-
taining an average of 5,536 faces. We apply random rota-
tions to each model, render 128 × 128 front-view motion-
blurred silhouette and color images, and measure the time
required for both forward rendering and gradient computa-
tion in a single pass. We render objects undergoing linear
translation with a varying number of samples. The evalua-
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Figure 4. Forward + gradient computation timing results. The
slope represents the average time of sampling once. The lower the
better. Our method achieves speedups of up to 4.57× and 1.23×
compared to SoftRas and Nvdiffrast, respectively.

tion considers the average time required for forward render-
ing and backward gradient computation across all models.
All experiments are conducted on a single NVIDIA RTX
4090 GPU with 24GB of memory. More details are pro-
vided in Section I.

The timing results are summarized in Fig. 4. Our
method achieves speedups of up to 4.57× over SoftRas and
1.23× over Nvdiffrast. Regarding Nvdiffrast [21], it is a
highly performant OpenGL-optimized rasterization library,
whereas our implementation is built on the SoftRas imple-
mentation. Nevertheless, our method is still faster than
Nvdiffrast, and incorporating our method into Nvdiffrast
would likely bring further acceleration. Moreover, we ob-
serve that Nvdiffrast produces weak gradient signals, as its
gradients are computed only near edges. This limitation can
lead to slower convergence or even failure in extreme shape
recovery tasks. In contrast, our method enables global gra-
dient propagation across all triangle primitives, facilitating
smoother optimization. Further discussion is provided in
Sec. 6.4.

5. Shape Optimization from Blurred Images

With our differentiable rendering pipeline, we now present
inverse rendering applications, i.e., recovering 3D shapes
from ultra-fast motion-blurred images. Thanks to our effi-
cient framework, our method supports rendering more sam-
ples, resulting in smoother forward rendering effects and
better backward gradients across the optimization process.
We demonstrate the effectiveness and advantages of our
method through two challenging tasks, where the goals are
to recover the 3D shape of ultra-fast moving objects from
two representative types of motion blur: multi-view trans-
lational and rotational blurred images.

Similar to other inverse rendering tasks, we assume
known rendering parameters for each image, including its
camera viewpoint and blur settings (translation or rotation
speed).



Input [33] Ours G.T.

(a) (b) (c) (d)

Figure 5. Qualitative results on geometry and color optimization.
(a) One of blurred input images. (b) State of the Art [33] result.
(c) Our optimization result. (d) Ground-truth object. Our method
yields significant superior results than the state-of-the-art work.
Note that the object trajectories are synthesized to test the solver’s
robustness to diverse motion vectors, rather than simulating real-
istic physical dynamics.

5.1. Translational Recovery
We begin with the task of optimizing a 3D shape under-
going linear translation. Given multi-view RGBA transla-
tional blurred images (consisting of RGB color I and trans-
parency α) as input, our method optimizes a mesh M with
vertex positions V and a texture map C such that the ren-
dered images, Î , α̂ = R(V,C), match the input.

The optimization of V and C is performed by minimiz-
ing the image loss and regularization terms. We adopt the
L1 loss for both color I, Î and transparency α, α̂, formu-
lated as:

Limg =
∥∥∥I − Î

∥∥∥
1
+ ∥α− α̂∥1 . (16)

Similar to [5, 22], we incorporate a smoothness loss Ls
and a Laplacian loss LL to regularize the deformation of V
(details provided in Section G). The final loss function is
defined as:

L = Limg + λsLs + λLLL. (17)

5.2. Rotational Recovery
We further apply our method to a more challenging task: re-
constructing fast-rotating objects from motion-blurred im-
ages. Similarly, given multi-view images I as input, our
method reconstructs a 3D mesh M corresponding to the ob-
served object.

Method Translation Rotation
3D IoU ↑ Static PSNR ↑ Blurred PSNR ↑

[33] 0.152 11.63 13.58
Ours 0.679 19.20 31.89

Table 1. Quantitative comparison for shape optimization from
blurred images. We compare the best performance between our
method and the state-of-the-art [33]. Our method achieves signifi-
cantly superior performance compared to [33].

Due to the highly non-convex nature of the rotation op-
timization problem, we observe that directly optimizing
mesh vertices rarely yields well-shaped objects (illustrated
in Sec. F). To mitigate this issue, we optimize a Signed Dis-
tance Function (SDF) representation instead. We construct
an SDF field S following [41], and extract a mesh M using
FlexiCubes [35] in a differentiable manner. Our differen-
tiable renderer R is then employed to generate correspond-
ing rotation images Î , which are subsequently used to opti-
mize S via loss functions. Given the complexity of the SDF
representation, we render grayscale images in this setting
and focus on shape recovery.

We retain the same Limg loss (from Eq. (17)) for im-
age consistency. For SDF regularization, we utilize the loss
terms Lcrit and Lreg from [41] and [35], respectively (details
in Section G). The final loss function is defined as:

L = Limg + λcritLcrit + λregLreg. (18)

6. Experiments

In this section, we present qualitative and quantitative ex-
periments to evaluate the effectiveness and efficiency of our
method for shape recovery from ultra-fast motion-blurred
images. In Secs. 6.1 and 6.2, we present translational
and rotational blurred shape recovery, respectively. Fur-
thermore, we validate our method’s practical applicability
through real-world motion blur data in Sec. 6.3. Finally,
we conduct an ablation study in Sec. 6.4, to demonstrate
the benefits of our method compared to the widely adopted
codebase SoftRas [22] and Nvdiffrast [21] under extreme
motion blur conditions. All hyperparameter settings and
more results are provided in Sections I, J and L.

6.1. Translational Recovery
In this experiment, we present our method’s 3D shape re-
construction performance for objects undergoing transla-
tional motion, specifically benchmarking against the state-
of-the-art [33]. We perform optimization on 25 selected
shapes from ShapeNet, and evaluate both the geometry and
color recovery. For geometry quantitative evaluation, we
voxelize the predicted and ground truth meshes into 323 vol-
umes, and compute the 3D IoU. For color quantitative eval-
uation, we compare the PSNR of multi-view static novel-
view-synthesis (NVS) of the objects. Quantitative evalua-



Input [33] Ours G.T.

(a) (b) (c) (d)

Figure 6. Qualitative results for optimization on rotating objects.
(a) One of blurred input images. (b) State of the Art [33] result. (c)
Our optimization result. (d) Ground-truth object. Our method also
yields a significant superior result than the state-of-the-art work.

tion results are presented in Tab. 1, while qualitative results
are illustrated in Fig. 5.

We assess our method’s fundamental capability in 3D
shape recovery from highly motion-blurred images by
benchmarking against the state-of-the-art work [33]. As
presented in Tab. 1 and Fig. 5, our method demonstrates
a significant advantage in translational recovery. Notably,
[33]’s reliance on the learning prior [32] to predict static
silhouettes fundamentally limits its performance in the chal-
lenging blurry input. In contrast, our method successfully
recovers meaningful 3D shape and appearance. More de-
tails and analysis are provided in Section K.1.

6.2. Rotational Recovery
In this experiment, we evaluate shape recovery for ob-
jects undergoing ultra-fast rotational motion, benchmark-
ing against the state-of-the-art [33]. Here, we observe that
multiple feasible 3D shape solutions may correspond to
the same blurred image; a detailed analysis is provided in
Section H. Consequently, traditional 3D evaluation metrics
(e.g., 3D IoU, Chamfer Distance) are not suitable. There-
fore, we assess the similarity between the rotational-blurred
images rendered from the reconstructed objects and the
ground truth, quantified using PSNR.

Similar to Sec. 6.1, for rotational motion, a similar trend
of superior performance is observed for our method com-
pared to [33]. As shown in Tab. 1 and Fig. 6, our method
achieves a significantly superior performance and succeeds
in a high-quality 3D reconstructions even under extreme ro-

(a) Experimental (b) Image (d) Ours
Setup Captured Result

Captured [33] Ours G.T.

Figure 7. Real-world experiment. (a) Our experimental setup. (b)
The original image captured. (c) Ours optimization result. The
remaining rows: More real-world examples. Quantitatively, our
method achieves a superior blurred PSNR score of 24.52 dB com-
pared to 12.51 dB for [33]. Our method is capable of reconstruct-
ing 3D objects from real-world motion-blurred images.

tational scenarios.

6.3. Real-World Results
Next, we evaluate our method on real-world images. We
capture a front view of 3D-printed rotating objects at 100
Hz with a camera exposure time of 1/100 s. Since the
data was captured in a controlled studio environment with a
black background, we extract the object alpha masks based
on pixel intensity thresholds to serve as supervision signals.
After preprocessing, including cropping and brightness cor-
rection, we perform rotational shape optimization using the
same settings as described in Sec. 5.2.

Results and evaluations are presented in Fig. 7. The
3D print technique allows us to establish ground truth for
evaluation. As summarized, our method achieves a supe-
rior blurred PSNR score of 24.52 dB compared to 12.51 dB
for [33], demonstrating a significant improvement. Qualita-
tively, due to the imperfect pose and noise introduced in real
data, the recovered shape exhibits slight artifacts compared



Figure 8. Optimization results for objects undergoing translation
and rotation. We draw optimization time v.s. performance curves
for our method and SoftRas, where each point indicate different
number of samples.

to the synthetic recovery results. Nevertheless, our method
successfully recovers reasonable shapes, demonstrating its
capability to handle real-world data effectively.

6.4. Ablation Study
Finally, we conduct an ablation study to validate our key
design choices. Specifically, we analyze the efficiency im-
provements of our method compared to the codebase Sof-
tRas, and assess the robustness and gradient quality of our
method against high-performance Nvdiffrast under the ex-
treme motion blur scenarios.
Comparison with SoftRas Our method is built upon the
SoftRas framework. Therefore, we compare our method
against SoftRas in terms of optimization time and recon-
struction quality. As shown in Fig. 8, several interesting
points can be observed. First, increasing the number of
samples improves performance but also increases optimiza-
tion time. This is reasonable as more samples result in
better blur simulation, yielding better shape recovery per-
formance and longer time. Second, our method exhibits
strong efficiency over SoftRas. Given the same number of
samples, our method achieves significantly faster optimiza-
tion time. Conversely, for the same optimization time, our
method yields superior reconstruction quality.
Comparison with Nvdiffrast Next, we present a compar-
ison of our method’s gradient quality and robustness against
Nvdiffrast. We first quantitatively assess the convergence
behaviors of both methods as a function of the number of
iterations. As illustrated in Fig. 9, our method demonstrates
a significantly faster convergence rate. This is attributable
to the stronger and more stable gradients generated by our
approach, in contrast to the comparatively weaker gradients
produced by Nvdiffrast.

Beyond convergence speed, we observe that Nvdiffrast
[21] frequently encounters catastrophic failures, leading to
the inability to reconstruct valid meshes. For example, in
our experiments on rotational recovery, Nvdiffrast failed to
successfully complete the process (manifested as program
crashes) in any of the 10 repeated attempts within 8 out of
25 test data cases, which even precluded a quantitative com-
parison with our method. Furthermore, even in cases where
Nvdiffrast manages to complete the reconstruction, its out-
put quality often exhibits lower fidelity compared to ours,

Figure 9. Comparison of convergence rates between our method
and Nvdiffrast w.r.t. number of iterations. Labels denote numbers
of iterations. The convergence rate of Nvdiffrast is significantly
slower than that of our method, which we attribute to its weaker
pixel-wise gradients.

(a) Nvdiffrast (b) Ours (c) Nvdiffrast (d) Ours
Figure 10. Failure cases of Nvdiffrast. (a, c) Nvdiffrast optimiza-
tion results. (b, d) Ours optimization results. In this task, our
method can successfully recover a well-shaped object in most sce-
narios, whereas Nvdiffrast frequently fails, or producing distorted
and uneven objects.
as illustrated in Fig. 10. In stark contrast, our method con-
sistently achieves successful, well-shaped, and high-fidelity
reconstructions. More analysis is provided in Section K.2.

7. Discussion
Limitations Our method currently relies on known cam-
era poses and motion parameters. Additionally, our physical
formation model assumes linear motion segments and a lin-
ear, noise-free photometric response. While effective, these
assumptions may deviate from in-the-wild scenarios char-
acterized by complex non-linear motion, camera response
functions (tone mapping), or sensor noise. We provide a
comprehensive discussion on these limitations and future
works in Section M.
Conclusion In this paper, we propose a novel inverse
rendering approach for 3D shape recovery from ultra-fast
motion-blurred images. Our fast barycentric coordinate
solver accelerates rendering while preserving accuracy, en-
abling efficient and fully differentiable shape reconstruc-
tion. Experimental results validate the effectiveness of our
method on both synthetic and real-world data, advancing
3D reconstruction under ultra-fast motion blur.
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moving objects. IEEE Transactions on Image Processing,
29:8577–8589, 2020. 2

[19] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
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Supplementary Material

A. Appendix Overview
In this appendix, we provide a comprehensive explanation
of the technical details and additional experimental results
of our work.

We start with the derivation of our method in Section B,
followed by implementation details in Section C. Section D
discusses segmentation analysis, and Section E covers vi-
sualization details. Scene settings are outlined in Section I.
We then address limitations with a failure case of rotational
optimization in Section F and detail all loss terms in Sec-
tion G. Section H analyzes the suitability of 3D losses for
evaluation. Finally, Section J provides hyperparameter set-
tings, Sec. K provides further analysis of baselines, and Sec-
tion L presents more results.

B. Derivation of Our Method
In this section, we show the derivation of our method.

Barycentric Coordinate Solver We detail the derivation
of A1, A2, A3, a1, a2, a3.

First we introduce the definition of adj(Fj(t)) and
det(Fj(t)). For a 3× 3 matrix A, given by:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (A1)

its determinant det(A) is computed as:

det(A) = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣−a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
(A2)

where each 2× 2 determinant (called a minor) is computed
as: ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc. (A3)

For the matrix A, its adjugate matrix adj(A) can be de-
fined by:

adj(A) =

C11 C21 C31

C12 C22 C32

C13 C23 C33

 , (A4)

where Cij are defined as:

Cij = (−1)i+jMij

and Mij is the determinant of the minor matrix obtained by
deleting the i-th row and j-th column of A.

If A is invertible (i.e., det(A) ̸= 0), the inverse of A can
be expressed in terms of its adjugate matrix:

A−1 =
adj(A)

det(A)
. (A5)

Now we consider derivation on a triangle. For a triangle
matrix Fj(t) represented as:

Fj(t) =

x0(t) x1(t) x2(t)
y0(t) y1(t) y2(t)
1 1 1

 , (A6)

where the vertex position v(t) can be defined by:

v(t) = (1− t)v(0) + tv(1), (A7)

its determinant det(Fj(t)) is

det(Fj(t)) = x0(t)
(
y1(t)− y2(t)

)
− x1(t)

(
y0(t)− y2(t)

)
+ x2(t)

(
y0(t)− y1(t)

)
,

(A8)

and the adjugate matrix adj(A) is

adj(Fj(t)) =y1(t)− y2(t) x2(t)− x1(t) x1(t)y2(t)− x2(t)y1(t)
y2(t)− y0(t) x0(t)− x2(t) x2(t)y0(t)− x0(t)y2(t)
y0(t)− y1(t) x1(t)− x0(t) x0(t)y1(t)− x1(t)y0(t)

 .
(A9)

Given a pixel pi =
[
u v 1

]T
, we have

w(t) = Fj(t)
−1pi =

adj(Fj(t))× pi

det(Fj(t))

=
A1t

2 +A2t+A3

a1t2 + a2t+ a3

(A10)

By Eqs. (A6) to (A10), we can represent A1, A2, A3,
a1, a2, a3 using xi(0/1), yi(0/1), u, v:

A1 =



−(x2(0)− x2(1))(y1(0)− y1(1))
+(x1(0)− x1(1))(y2(0)− y2(1))

((x2(0)− x2(1))(y0(0)− y0(1))
−(x0(0)− x0(1))(y2(0)− y2(1)))

(−((x1(0)− x1(1))(y0(0)− y0(1)))
+(x0(0)− x0(1))(y1(0)− y1(1)))


, (A11)



A2 =



u(−y1(0) + y2(0) + y1(1)− y2(1))
+v(x1(0)− x2(0)− x1(1) + x2(1))

+(y2(0)x1(1)− y1(0)x2(1)+
x2(0)(2y1(0)− y1(1))+
x1(0)(−2y2(0) + y2(1)))

u(y0(0)− y2(0)− y0(1) + y2(1))
+v(−x0(0) + x2(0) + x0(1)− x2(1))

+(−(y2(0)x0(1)) + y0(0)x2(1)+
x2(0)(−2y0(0) + y0(1))+
x0(0)(2y2(0)− y2(1)))

u(−y0(0) + y1(0) + y0(1)− y1(1))
+v(x0(0)− x1(0)− x0(1) + x1(1))

+(y1(0)x0(1)− y0(0)x1(1)+
x1(0)(2y0(0)− y0(1))+
x0(0)(−2y1(0) + y1(1)))



, (A12)

A3 =



u(y1(0)− y2(0)) + v(−x1(0) + x2(0))
+(−(x2(0)y1(0)) + x1(0)y2(0))

u(−y0(0) + y2(0)) + v(x0(0)− x2(0))
+(x2(0)y0(0)− x0(0)y2(0))

u(y0(0)− y1(0)) + v(−x0(0) + x1(0))
+(−(x1(0)y0(0)) + x0(0)y1(0))


, (A13)

a1 =
−(y1(0)x0(1)) + y2(0)x0(1)

−y2(0)x1(1) + y0(0)(x1(1)− x2(1))
+y1(0)x2(1)− x1(1)y0(1)

+x2(1)y0(1) + x0(1)y1(1)− x2(1)y1(1)
+x2(0)(y0(0)− y1(0)− y0(1) + y1(1))
+x1(0)(−y0(0) + y2(0) + y0(1)− y2(1))

−x0(1)y2(1) + x1(1)y2(1)
+x0(0)(y1(0)− y2(0)− y1(1) + y2(1)),

(A14)

a2 =
y1(0)x0(1)− y2(0)x0(1)
+y2(0)x1(1)− y1(0)x2(1)
+y0(0)(−x1(1) + x2(1))

+x2(0)(−2y0(0) + 2y1(0) + y0(1)− y1(1))
+x0(0)(−2y1(0) + 2y2(0) + y1(1)− y2(1))
+x1(0)(2y0(0)− 2y2(0)− y0(1) + y2(1)),

(A15)

a3 =
x2(0)(y0(0)− y1(0))
+x0(0)(y1(0)− y2(0))

+x1(0)(−y0(0) + y2(0)).

(A16)

Euclidean Distance Approximation In this section, we
detail the derivation of ŵ∗.

Given a triangle F =
[
v0 v1 v2

]
=

x0 x1 x2

y0 y1 y2
1 1 1


and pixel barycentric coordinates w =

[
w0 w1 w2

]
, we

consider finding ŵ∗ =
[
w∗

0 w∗
1 w∗

2

]
such that

ŵ∗ = argmin
ŵ∈[0,1]3

||Fw − Fŵ||22 . (A17)

If the pixel is inside the triangle, it’s obvious that ŵ∗ =
w, so we only consider the scenario where the pixel is out-
side the triangle.

First we calculate the pixel position p =
[
u v 1

]T
=

Fw. If p is outside the triangle F, the closest point p∗ must
lie on one of the triangle’s edges. Therefore, we need to
compute the closest point from p to each of the 3 edges of
the triangle and select the one with the minimum distance.

For each edge vivj , we first compute the parameter t

such that the projection (closest) point p
′
= vi+t(vj−vi).

We have

t =
(u− xi)(xj − xi) + (v − yi)(yj − yi)

(xj − xi)2 + (yj − yi)2
. (A18)

If 0 ≤ t ≤ 1, the projection point lies on the edge,
and the barycentric coordinates of p

′
can be represented

as w
′

=
[
w

′

0 w
′

1 w
′

2

]
, where w

′

i = 1 − t
′
, w

′

j =

t, the rest one = 0. If t < 0, then p
′

= vi, w
′

i =

1, the rest = 0. If t > 1, then p
′
= vj , w

′

j = 1, the rest =
0.

Perform these computations for the three edges v0v1,
v1v2, v2v0, then choose the p

′
with the smallest distance.

Its barycentric coordinates w
′

are the desired solution ŵ∗.

C. Implementation Details
In this section, we present implementation details of our
method. Our codebase is built on SoftRas. However, we
follow DIB-R [5] and separately compute the foreground
and background pixels. Moreover, in the original Softras
implementation, the probability map Ai

j is defined as:

Aj
i = sigmoid

(
−d (pi,Fj)

δ

)
. (A19)

We change it to exponential function for smoother gradi-
ents [5]:

Aj
i = exp

(
−d (pi,Fj)

δ

)
. (A20)

In addition, we find that enabling Aggregate Function in
SoftRas [22] results in a total reconstruction failure in the
optimization task, so we disable it in all of our experiments.

D. Segmentation Analysis
In the main paper, we decompose the entire rotation into
12 segments. In this section, we will illustrate the quality
of forward rendered images and backward gradients with
respect to the number of segments used.

Results are illustrated in Fig. A1. If using fewer than
12 segments (e.g., 6 segments) leads to severe artifacts in
the forward rendering. Conversely, employing more than
12 segments increases the computational cost significantly,
with only marginal improvement in rendering quality.

Therefore, as a trade-off between rendering quality and
computational efficiency, 12 segments are chosen in our ex-
periments.
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Figure A1. Impact of Segment Count on Rendering and Gradient
Quality. Forward rendering and backward gradient visualization
demonstrating the effect of different segment counts on motion-
blur synthesis. As illustrated, using fewer than 12 segments (e.g.,
6 segments) introduces severe artifacts in forward rendering and
compromises gradient quality. Increasing the segment count to
12 significantly improves both rendering smoothness and gradient
accuracy.

E. Visualization Details

In this section, we provide detailed explanations of the ren-
dering process for the images presented in Fig. 3.

All forward images are rendered using the same cam-
era parameters and blur settings (i.e., translation or rotation
speed) as those used in our main experiments. For transla-
tional motion, we do not decompose the motion into seg-
ments. For rotational motion, the entire rotation circle is al-
ways decomposed into 12 segments. Consequently, for ro-
tational motion blurred with a total of 12, 60 or 240 samples,
these are respectively distributed as 1, 5 and 20 samples per
segment, given our decomposition into 12 segments.

For gradient images, we compute gradients with respect
to the X-positions of all vertices. After obtaining these per-
vertex gradient scalars, we then render these scalars into
single-channel grayscale images, which are subsequently
color-mapped using the Viridis color-map for visualization.

All images are rendered at a resolution of 512×512 pix-
els.

F. Failures of Mesh in Rotational Optimization

In rotational optimization, we observe that directly optimiz-
ing mesh vertices fails to recover well-shaped objects. One

(a) G.T. (b)
Mesh

Low Smo.(c)
Mesh

High Smo. (d) SDF

Figure A2. The results of rotational optimization. Mesh repre-
sentation fails to recover a well-shaped Spot cow, no matter how
smooth it is. Instead, SDF representation recovers a significantly
better Spot cow.

such failure case is illustrated in Fig. A2. The mesh repre-
sentation consistently fails to recover a well-shaped object,
even when incorporating smoothing regularization during
optimization. In contrast, the results obtained with the SDF
representation are substantially superior.

G. Details of Loss Terms
In this section, we provide detailed definitions of additional
loss terms not explicitly covered in our main paper.

Laplacian Loss Our definition of Laplacian loss follows
[22]. For each vertex v, let N (v) be the set of adjacent
vertices of v. The Laplacian loss is then defined as:

LL =
∑
v

∥∥∥∥∥∥δv − 1

|N (v)|
∑

v′∈N (v)

δv′

∥∥∥∥∥∥
2

. (A21)

where δv denotes the predicted movement of vector v. This
Laplacian loss encourages adjacent vertices to move consis-
tently, thereby promoting mesh deformation smoothness.

Smoothness Loss Our definition of Smoothness loss is
the same as [22]. For all two neighboring faces sharing the
edge ei, let θi be the dihedral angle between the two faces.
We have

Ls =
∑
ei

(cos(θi) + 1)
2
. (A22)

This smoothness loss encourages adjacent faces to have
similar normal directions, thereby penalizing sharp edges.

Regularization Loss in FlexiCubes We incorporate the
regularization loss provided in FlexiCubes [35]. It is defined
as:

Lreg = λdevLdev + λsignLsign. (A23)

For Ldev, it is defined as:

Ldev =
∑
v∈V

MAD [{|v − ue|2 : ue ∈ N (v)}] , (A24)



where V denotes the set of voxel grid vertices, | · |2 de-
notes Euclidean distance, MAD(Y ) = 1

|Y |
∑

y ∈ Y |y −
mean(Y )| is the Mean Absolute Deviation, and N (v) de-
notes the set of adjacent vertices of v. This term penalizes
the variability of distances between a vertex v and its neigh-
bors ue ∈ N (v).

For Lsign, it is defined as:

Lsign =
∑

(sa,sb)∈Eg

H (σ(sa), sign(sb)) , (A25)

where Eg denotes the set of all edges (a, b) where the
scalar function values (sa, sb) at grid vertices a, b have dif-
fering signs (i.e., cross the zero-level set). H and σ de-
note the cross-entropy and sigmoid functions, respectively.
This term discourages the appearance of spurious geomet-
rical structures or internal cavities in regions where explicit
shape supervision is absent.

We use the same weight parameters λdev, λsign as speci-
fied in [35].

Regularization Loss in Neural-Singular-Hessian We
use the regularization loss provided in Neural-Singular-
Hessian [41]. It is defined as:

Lcrit = λEikonalLEikonal + λsingularHLsingularH. (A26)

The Eikonal loss LEikonal is defined as:

LEikonal =

∫
P
||(||∇f(x)||2 − 1)||1 dx, (A27)

where f(·) denotes the SDF function and P denotes the set
of sampling points. The Eikonal loss encourages the gradi-
ent magnitude of the SDF field to be 1, which is crucial for
maintaining global smoothness and a valid SDF property.

The singular Hessian loss LsingularH is defined as:

LsingularH =

∫
Pnear

|| det(Hf (x))||1 dx, (A28)

where f(·) denotes the SDF function, Pnear denotes the set
of sampling points located near the zero-level set (surface),
and det(Hf (x)) signifies the determinant of the Hessian
matrix Hf(x). The Hessian matrix is defined as the Jaco-
bian of the gradient of f :

Hf (x) =

fxx(x) fxy(x) fxz(x)
fyx(x) fyy(x) fyz(x)
fzx(x) fzy(x) fzz(x)

 . (A29)

We set the initial weighting parameters as λEikonal =
50
53

and λsingularH = 3
53 . The same decay policy as described in

[41] is adopted.

(a) Cylinder (b)
Twisted
Cylinder (c)

Blur
Image (d)

Ours
Result

Figure A3. A cylinder and a twisted cylinder. They share a same
rotational blurred image. Given (c) as input, our optimization re-
sult is (d).

H. Analysis of 3D Losses in Rotational Opti-
mization

In rotational optimization, we did not employ 3D losses for
quantitative evaluation of reconstructed object shapes. The
rationale behind this decision is detailed in this section.

In the rotational recovery task, it is common for multiple
distinct 3D objects to produce rotational motion-blurred im-
ages that are indistinguishable from the input blurred image.
An illustrative example is provided in Fig. A3, where the
rotational motion-blurred images of both objects in Fig. A3
(a, b) result in the same blurred image shown in Fig. A3 (c).

As demonstrated in Fig. A3 (a, b), the geometric discrep-
ancies among feasible objects can be substantial, and it is
unreasonable to designate any one of these feasible objects
as the ground truth. Consequently, evaluating the results
using 3D losses or static image losses is not suitable.

To the best of our knowledge, the most effective evalua-
tion for this task is to compute the differences between the
rotational motion-blurred images, which is adopted in our
main paper.

I. Scene Settings

In this section, we detail the specific configurations for our
scenes, covering object initialization, motion parameters,
and camera extrinsic and intrinsic properties.

I.1. Object Initialization

All 3D objects utilized in our experiments (e.g., for gradient
visualization and optimization evaluation) undergo a two-
step initialization process. First, Each object is uniformly
scaled such that the maximum Euclidean norm of any ver-
tex does not exceed 1. Subsequently, each object is rotated
around its local X-axis by a random angle uniformly sam-
pled from the range [−90◦, 90◦].

I.2. Motion Parameters

Translation For all translational motion, objects undergo
a linear translation along the X-axis. The position P (t) =
(x(t), y(t), z(t)) of a vertex that was initially at P0 =



(x0, y0, z0) is defined by:
x(t) = x0 + (0.5− t)

y(t) = y0

z(t) = z0

for t ∈ [0, 1] (A30)

This leads to the object translating linearly from an X-
coordinate of x0 + 0.5 at t = 0 to x0 − 0.5 at t = 1.

Rotation For rotational motion, objects are rotated
around the Y-axis. The angular displacement is θ(t) = 2πt,
where t ∈ [0, 1]. The position P (t) = (x(t), y(t), z(t)) of a
vertex that was initially at P0 = (x0, y0, z0) is defined by:

P (t) = Ry(2πt)P0, (A31)

where Ry(θ) is the 3D rotation matrix around the Y-axis by
an angle θ:

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (A32)

I.3. Camera

Following SoftRas, our camera setup employs a stan-
dard perspective model. The camera’s eye point E =
(Ex, Ey, Ez), from which it observes the scene origin
(0, 0, 0), is defined by spherical coordinates: a radial dis-
tance d, an elevation angle ϕ, and an azimuth angle θ. The
conversion to Cartesian coordinates is given by:

Ex = d cos(ϕ) cos(θ)

Ey = d cos(ϕ) sin(θ)

Ez = d sin(ϕ)

(A33)

For all experiments, d = 2.232, and ϕ ∈ {−60◦,
−30◦, 0◦, 30◦, 60◦}. The azimuth angle θ varies with
the motion type: (1) For translational motion, θ ∈
{−315◦,−270◦,−225◦ ,−180◦,−135◦,−90◦,−45◦, 0◦};
(2) For rotational motion, θ = 0◦.

The camera’s intrinsic parameters define a perspective
projection with a fixed half-angular field of view α = 30◦.
A 3D point P = (x, y, z) in camera coordinates is projected
to an image point Pp = (xp, yp) as:

xp =
x

z · tan(α)
and yp =

y

z · tan(α)
(A34)

J. Hyperparameter Settings

In this section, we detail the hyperparameter settings used
in our experiments.

J.1. Overall Settings

Following [22], we set δ = 1 × 10−4 in the probability
function. Unless otherwise stated, we randomly select 25
objects from ShapeNet [3] for evaluation. The ADAM op-
timizer [16] is employed for optimization. Each image is
rendered at a resolution of 128 × 128 pixels. All experi-
ments are conducted on a single NVIDIA RTX 4090 GPU
with 24GB of memory.

J.2. Translational Optimization

In this experiment, each object is rendered from 40 differ-
ent viewpoints. We set λS = 3 × 10−2, λL = 3 × 10−4,
and α = 0.01, β1 = 0.5, β2 = 0.99 (following [22]) for
the ADAM optimizer. The batch size for input views is set
to 16, and each object is optimized for 1000 iterations. A
sphere consisting of 1352 vertices and 2700 faces is uti-
lized as a template mesh for deformation. We use the same
method as the official SoftRas implementation for mesh tex-
turing.

J.3. Rotational Optimization

In this experiment, each object is rendered from 5 view-
points with varying elevations. The ADAM optimizer is
configured with α = 5× 10−4, β1 = 0.9, and β2 = 0.999.
The batch size for input views is set to 5, and each ob-
ject is optimized for 1000 iterations. We set the initial
λcrit = 3 × 10−3, λreg = 1. The voxel-grid resolution in
FlexiCubes [35] is set to 32. In our approach, we decom-
pose the entire rotation into 12 segments, all of which are
uniformly sampled.

We first pretrain the SDF field on an inclined ellipsoid
(defined by 4x2 + 2.5y2 + 2.5z2 − 3yz = 1) for 500 it-
erations, followed by an additional 1000 iterations of opti-
mization.

K. Further Analysis of Baselines
K.1. Shape From Blur [33]

In this section, we provide more details and analysis
of our comparative experiments against Shape from Blur
(SFB) [33].

Experimental Setup Adaptations for Comparison The
problem formulation and experimental setup of SFB differ
from our inverse rendering approach. SFB is designed to
recover 3D shape and motion parameters directly from a
single RGB blurred image, leveraging a pre-trained neural
network (DeFMO, [32]) for intermediate guidance. Specif-
ically, SFB takes a single RGB image and an RGB back-
ground as input, and does not require or utilize explicit ob-
ject motion information (e.g., translation or rotation veloci-
ties). Its core optimization loop involves:



1. Using DeFMO to predict instance-level static masks (sil-
houettes) for multiple intermediate timestamps from the
input. These masks represent the underlying static ap-
pearance of the object at various points along its motion
path.

2. Optimizing for mesh deformation (starting from a tem-
plate mesh) and motion parameters (translation t, ∆t,
rotation r, ∆r) through a single-view, differentiable ren-
dering pipeline.

3. In each optimization iteration, it renders RGB images
and silhouette masks for multiple timestamps.

4. The rendered silhouettes are compared against the static
masks predicted by DeFMO.

5. All rendered RGB images, masked by their silhouettes
and composited with the input background, are averaged
to form a synthetic motion-blurred image. This image
is then compared against the input RGB image. These
losses drive the backward propagation and optimization.

In contrast, our method operates on multi-view RGB images
with their corresponding non-binary transparency masks
(alpha channels). In addition, our method requires and
utilizes object motion information (e.g., trajectory, veloci-
ties) as input. During optimization, we render multi-view
motion-blurred RGBA images by accumulating contribu-
tions from the object along its known motion path, which
are then compared against the input images for gradient
computation.

Despite these fundamental differences, SFB remains the
most relevant benchmark due to the severe scarcity of al-
ternative methods tackling 3D shape recovery from motion
blur. To enable a best-effort comparison, we adapted our
data for SFB. Specifically, for each input to SFB, we gener-
ate a single RGB image by masking our RGB images with
corresponding transparency masks and compositing them
onto a plain black background, to minimize the influence of
the background to the greatest extent possible. This ensures
SFB receives input that best aligns with its expected format
(RGB image + background) while making our data com-
patible. We kept SFB’s camera parameters consistent with
those used in our setup and made no other modifications to
SFB’s internal configurations or parameters, aiming for the
most straightforward comparison.

Why SFB Performs Not So Well in These Extreme
Motion Scenarios As demonstrated in the main paper
(Tab. 1), our method significantly outperforms SFB for
ultra-fast motion blur reconstruction. This disparity, partic-
ularly in extreme motion scenarios, primarily stems from
a limitation in SFB’s pipeline: its heavy reliance on the
DeFMO [32] neural network for deriving intermediate static
masks.

DeFMO, while generally effective for typical fast mo-
tion blur scenarios, fails when confronted with the highly

diffused and ambiguous observations generated by ultra-
fast motion. In such extreme cases, DeFMO struggles to
accurately predict the static masks at timestamps along the
motion path. As illustrated in Fig. A4, the masks produced
by DeFMO for our ultra-fast motion blurred images are of-
ten highly inaccurate and entirely non-representative of the
underlying object’s true silhouette.

Since the DeFMO-predicted static masks serve as a fun-
damental guidance signal for SFB’s shape and motion re-
covery, their inaccuracy directly propagates through the en-
tire pipeline. This makes SFB ineffective for the ultra-fast
motion blur reconstruction challenge, despite any richness
in the input image data provided.

However, we acknowledge that SFB is a pioneering
and important work that significantly advances the field of
shape-from-blur by introducing a novel, learning-assisted
approach to tackle this challenging inverse problem. Our
analysis of its limitations merely highlights the unique dif-
ficulties posed by extreme motion blur. While our method
demonstrates superior performance in this specific setting,
the requirement for input transparency masks will be a lim-
itation. We believe that addressing the challenges of ex-
treme motion blur, particularly managing the ambiguity
without explicit transparency, presents a significant and fer-
tile ground for future research.

K.2. Analysis of Nvdiffrast’s Gradient Computa-
tion

In the main paper (Section 6.4), we demonstrated Nvd-
iffrast’s limited performance in reconstructing shapes from
extreme motion blur. This might stem from a fundamental
difference in how geometry gradients are computed.

Nvdiffrast primarily derives geometry gradients from
localized, pixel-wise anti-aliasing signals along triangle
edges. This means a vertex’s influence on the gradient is
concentrated on a few pixels it directly affects. While effi-
cient for rendering, these localized gradients are insufficient
for optimizing shape deformations from highly ambiguous,
severely blurred input images. It leads to slow convergence
or catastrophic failures due to a lack of meaningful gradient
signals.

In contrast, our method, built on from SoftRas [22], en-
ables each vertex to influence many pixels across a broader
image region, effectively generating global and smoothed
gradients. Such gradients provide a more stable signal for
shape optimization. This fundamental difference in gradi-
ent computation contributes to robust 3D shape recovery in
our challenging scenarios.

L. More Results

In this section, we present additional experimental results.
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Figure A4. Failures of DeFMO [32] in Extreme Motion Blur. Each group displays: Left. Input motion-blurred image. Right. Three rows
presenting results from DeFMO: Top Row. RGB images predicted by DeFMO at various timestamps. Middle Row. Corresponding static
masks (silhouettes) predicted by DeFMO. Bottom Row. Ground Truth (G.T.) static masks at the respective timestamps. As illustrated,
DeFMO [32] fails to predict accurate static masks under these extreme motion conditions. This fundamental inaccuracy in DeFMO’s prior
critically undermines the optimization guidance for SFB [33], ultimately leading to its reconstruction failures in the challenging scenarios.

L.1. Parabolic Recovery

We provide an evaluation on a more complex motion
type: combined translational and rotational motion along
a parabolic trajectory.

In this experiment, each vertex P0 = (x0, y0, z0) un-

dergoes a two-step transformation to define its motion
path over time t ∈ [0, 1]. The vertex is first rotated
around the Y-axis by an angle θ(t) = πt, where t ∈
[0, 1]. The intermediate rotated position Prot(t) is given
by Prot(t) = Ry(πt)P0. Specifically, for Prot(t) =



(a) Illustration (b) Evaluation

Figure A5. Shape recovery for complex motion trajectories
(parabolic translation + rotation). Labels indicate the correspond-
ing number of samples. We achieve better performance than Soft-
Ras.

(xrot(t), yrot(t), zrot(t)):
xrot(t) = x0 cos(πt) + z0 sin(πt)

yrot(t) = y0

zrot(t) = −x0 sin(πt) + z0 cos(πt).

(A35)

Subsequently, a translation vector T (t) =
(Tx(t), Ty(t), Tz(t)) is applied to the rotated position
Prot(t). Let s(t) = 0.5 − t. The components of this
translation vector are:

Tx(t) = s(t)

Ty(t) = −4s(t)2 + 0.5

Tz(t) = s(t).

(A36)

The final position P (t) = (x(t), y(t), z(t)) at time t is then
P (t) = Prot(t) + T (t). Specifically:

x(t) = xrot(t) + (0.5− t)

y(t) = yrot(t) + (−4(0.5− t)2 + 0.5)

z(t) = zrot(t) + (0.5− t).

(A37)

Illustration and evaluation results are shown in Fig. A5.

L.2. Accelerating Existing Pipelines

We further demonstrate the potential of our method as an
accelerator for existing optimization-based inverse render-
ing pipelines. We integrate our method into [33], replac-
ing its original rendering component. We evaluate its per-
formance by comparing total optimization time and recon-
struction quality (TIoU, PSNR, SSIM) against the original
[33].

Quantitative comparison results are presented in Tab. A1.
Our integration reduces the optimization time while main-
taining comparable reconstruction quality. These results
demonstrate our method’s effectiveness in accelerating ex-
isting inverse rendering pipelines, thereby enabling them

to tackle complex, real-world motion blur scenarios with
greater efficiency.

Moreover, these results also demonstrate that our method
can leverage existing pipelines (e.g., [33]) to handle diverse
real-world scenarios.

Method Falling Objects Dataset Time (s)TIoU ↑ PSNR ↑ SSIM ↑
[33] 0.678 26.133 0.736 60.663

[33] + Ours 0.678 26.010 0.731 47.227

Table A1. Evaluation on the FMO real-world benchmark. Note
time contains both rendering and data processing steps. Our solver
can be integrated into [33]’s pipeline, providing faster optimiza-
tion with comparable performance. “+ Ours” denotes replacing the
Kaolin DIB-R rasterizer with ours but retaining the texture map-
ping module. Since the time cost for per template mesh remains
similar, as reported in [33], we follow the best settings but use the
Voronoi sphere as the template mesh only, and split the trajectory
into 8 segments in our method. We have tried our best to make re-
production (the top row) but small discrepancy in performance still
exists, which might impact little on our time-oriented evaluation.
Results show that with the complement of out method (the bottom
row), a speedup can be achieved without significant losses of per-
formance. In addition, Kaolin DIB-R is a highly-optimized CUDA
renderer, while our method is lack of low level CUDA optimiza-
tion. We believe that with more such optimization, our method can
achieve a more significant acceleration.

M. Detailed Limitations and Future Work
In this section, we provide a detailed discussion on the lim-
itations of our method and potential directions for future
research.

Dependency on Known Motion and Poses Similar to
many inverse rendering approaches, our current optimiza-
tion pipeline requires known camera intrinsics, poses, and
motion information. In unconstrained settings, obtaining
these parameters can be challenging. A promising direc-
tion is to integrate our differentiable renderer with motion
estimation modules (e.g., [33]) to jointly estimate motion
trajectories and shape from the input image. We present a
preliminary trial of this integration in Sec. L.2.

Motion Linearity Assumption Our fast barycentric
solver assumes that motion within each time segment is
linear. While this approximation holds for short exposure
times, highly complex non-linear motions may introduce er-
rors. Addressing this would require modeling higher-order
motion trajectories or employing finer temporal segmenta-
tion, which we leave for future optimization.

Photometric Assumptions Our rendering model as-
sumes a linear photometric relationship between the scene



radiance and pixel intensity. However, real-world camera
ISPs (Image Signal Processors) typically apply non-linear
tone mapping curves (e.g., Gamma correction) to compress
high dynamic range data for display. Furthermore, high-
speed photography often necessitates high ISO settings to
compensate for short exposure times (if not blurring in-
tentionally), or operates in low-light conditions where the
signal-to-noise ratio is low. Our current model does not
explicitly account for non-linear camera response func-
tions or sensor noise. Future work could incorporate learn-
able camera response functions (CRFs) and noise model-
ing to enhance reconstruction robustness in raw, in-the-wild
footage.
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